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Abstract—We propose a novel transmission scheme for ultra-
reliable multi-hop multiple-antenna communication where relays
perform only universal linear operations on the received sig-
nals. In particular, the operations are channel-oblivious, and
no detection takes place in intermediate relaying nodes. The
processing at each relay may be viewed as a concatenation of a
dimension-reduction operation, i.e., a universal combining, and
orthogonal space-time block coding, i.e., a universal transmission
operation. It is demonstrated that the developed transmission-
combining relaying technique guarantees reliable communication
in a very strong sense: so long as all relay-to-relay links have
a non-vanishing capacity, reliable communication is possible.
The proposed schemes are derived by establishing a certain
operational equivalence relationship between the true channel
and an associated multiple-input single-output channel.

I. INTRODUCTION AND BACKGROUND

Ultra-reliable communication over multi-hop networks has
become an essential component for many applications. Among
them, we can note reliable cloud (edge) connectivity and
offloading [1], vehicle-to-vehicle (V2V) wireless coordination
[2], mission-critical machine-type communications [3] and
many others (see, e.g., [4]).

A key challenge for achieving the goal of ultra-reliable
communication over wireless links is overcoming channel
uncertainty, especially so when small payloads are to be
transmitted. One of the fundamental approaches to enhancing
robustness to channel variability is the use of multiple transmit
and/or receive antennas, thus achieving diversity.

The difficulty of achieving full diversity greatly depends on
two factors: the availability of channel state information (CSI)
and the MIMO configuration. Clearly, the task is simple if CSI
is available at all nodes, allowing one to adapt the transmission
rate accordingly so that an outage does not arise. Moreover,
by employing the singular value decomposition, simple coding
and detection can be used.

Achieving full diversity for a single hop transmission when
CSI is available only at the receiver on a MIMO channel is also
a well-studied problem. It can be accomplished via space-time
coding, and in particular, via orthogonal space-time coding [5].
The latter method will play a central role in the sequel.

In this work, we consider ultra-reliable transmission over
a MIMO multi-hop scenario (Figure 1) where we wish to

This work was supported by the ISRAEL SCIENCE FOUNDATION (ISF),
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guarantee robust transmission over the end-to-end link, be-
tween a source node and one of several possible destination
nodes (where the specific destination is not known in advance).
Hence, in such a setting, selection methods (see, e.g. [2], [6],
[7]) are inapplicable.

A straightforward approach for channel-oblivious multi-hop
relaying (i.e., with no CSI at the relays) is that of amplify-and-
forward (AF), i.e., each relay retransmits the received signal
(plus noise) to the next relay node, amplified to meet some
signal power constraint. However, as we demonstrate in the
sequel, two “ill-matched” MIMO channels (3), each having
adequate capacity, may nonetheless result in losing the signal
entirely at the destination (zero capacity). Hence, AF is ill-
suited for ultra-reliable multi-hop transmission.

Furthermore, straightforward extensions which are DMT
optimal (assuming Rayleigh fading) for both single and multi-
hop, see e.g. [8], fail on the same example (two ill-matched
MIMO channels) as AF above. See Remark 2.

Despite the fact that the above example may be viewed
as a rare event, when considering ultra-reliable applications
it is evident that transmission schemes that are robust to any
combination of MIMO channels are desirable. That is, we seek
schemes that guarantee successful transmission, so long as all
individual links are of “adequate” quality.

Schemes meeting such stringent requirements, formally
defined in the sequel, will be called universal, ultra-reliable
transmission schemes. Designing such schemes while simul-
taneously retaining a high symbol rate (i.e., bandwidth (BW)
efficiency) is a non-trivial task and is the goal of this work.1

The simplest AF method that achieves ultra-reliability is
that of repetition. Assuming a cascade of nodes, each equipped
with Nt transmit, and Nr receive antennas, we show in the se-
quel that the BW efficiency over the ℓ-th hop is 1

Nt
· 1
(Nt·Nr)ℓ−1

which decreases exponentially with factor Nt ·Nr in ℓ.
Building upon orthogonal transmission-combining schemes

presented in [9] and [10], we propose novel transmit and
combining methods that achieve high BW efficiency over the
multiple links and scale much better in the number of hops ℓ.

II. SYSTEM MODEL

We analyze an ad-hoc communication scenario where a
single source wishes to transmit a message to a group of

1We use the terms symbol rate and BW efficiency interchangeably.
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possible destinations via relays. For simplicity, we may assume
each group of relays is located within the same distance from
the transmitter. We denote the source node by D(1), the relays
at group ℓ by D

(ℓ)
iℓ

and the destination nodes by D
(L+1)
iL+1

.
The number of relay nodes can be arbitrary, and thus, the
range of the index iℓ can also be arbitrarily large. We assume
full synchronization in the network and ignore propagation
delay. We further assume node D

(ℓ)
iℓ

can only transmit in-
formation to nodes {D(ℓ+1)

iℓ+1
} and receive information from

nodes {D(ℓ−1)
iℓ−1

}. We further assume each node D
(ℓ)
iℓ

receives

information only from a single node in {D(ℓ−1)
iℓ−1 }, i.e., there is

no interference from adjacent transmitting nodes (and in fact,
we define a tree topology). Transmission from the source to a
single destination can be viewed as a line network. We note
that the index iℓ, identifying a specific node within group ℓ
plays no role in the analysis.

While in general, we may assume a different number of
transmit/receive antennas for each node, in this work, we
assume that the source has Nt antennas, the destination has
Nr antennas, and each relay has Nt transmit and Nr receive
antennas. We denote the channel between adjacent nodes in
layer ℓ and ℓ + 1 by H(ℓ,iℓ) ∈ CNt×Nr , and the channel
coefficient from transmit antenna m in node ℓ to receive
antenna n in node ℓ+ 1 by h

(ℓ,iℓ)
mn .

In this work, we assume, for simplicity, that all channels
in group ℓ have the same Frobenius norm, which is strictly
positive, i.e., ∥H(ℓ,iℓ)∥2F = ∥H(ℓ)∥2F > 0 for all iℓ. As all
channels have the same Frobenius norm, the main challenge
we address is the possibility that the channel matrices are ill-
matched, a notion described below. Our goal is to guarantee
successful transmission under the worst-case conditions of an
end-to-end line-network, from source to some destination, as
depicted by the highlighted blocks in Figure 1.

We describe each relay node as composed of two functional
blocks: a combining block and a transmission block which is
depicted in Figure 2. We assume that each transmitter block
uses a space-time block code (STBC), that is, the transmitter
in node ℓ wishes to transmit k(ℓ) information symbols s(ℓ) =[
s
(ℓ)
1 , . . . s

(ℓ)

k(ℓ)

]T
where s

(ℓ)
w ∈ C, over T (ℓ) channel uses.2 We

describe the transmitted symbols from node ℓ, ℓ ∈ {1, . . . , L}
by a STBC, denoted by C(ℓ)(s(ℓ)) ∈ CT (ℓ)×Nt , where the
entry x

(ℓ)
t,m is the transmitted symbol at time t from antenna

m, t ∈ [1, . . . , T (ℓ)] and m ∈ [1, . . . , Nt].
We assume a sum power constraint, i.e.,
1

Nt·T (ℓ)

∑T (ℓ)

t=1 E
[
∥x(ℓ)

t,m∥2
]
= P .

It is assumed that the channel remains fixed during the
transmission duration. We denote the received signal at node
ℓ+ 1 as

Y(ℓ+1) = C(ℓ)(s(ℓ))H(ℓ) + Z(ℓ+1). (1)

where Zℓ+1 ∈ CT (ℓ)×Nr is the space-time noise matrix where
z
(ℓ+1)
t,n is the noise at each received antenna n at node ℓ+1 at

2In this paper, the vertical “direction” corresponds to the time axis.

D(1)

D
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Group 2 Group L+ 1

Figure 1. Multi-hop MIMO relaying.
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Figure 2. Zoom into node ℓ.

time t which we assume is i.i.d., circularly-symmetric complex
Gaussian noise with power 1/Nr.

The induced transmission symbol rate (which is the trans-
mission BW efficiency for transmission of k(ℓ) information
symbols) when using the OSTBC C(ℓ)(s(ℓ)) is R

(ℓ)
s ≜ k(ℓ)

T (ℓ) .

Remark 1. While in the present context, T (ℓ) refers to the
number of time slots used, it may equally refer to frequency
slots or, more generally, degrees of freedom.

The combining block takes the matrix Y(ℓ) as its input and
returns as output a column vector s̃(ℓ) ∈ Ck(ℓ)

, representing
a stream of symbols that could be used by the destination
to recover the original information symbols, or alternatively,
relayed efficiently over another MIMO hop.3 The essence of
the combining unit is that it performs dimension reduction.
Thus, it may improve the overall bandwidth efficiency.

We limit our interest to combining blocks that perform
linear or widely-linear operations, denoted by C(ℓ)(·) over
Y(ℓ), resulting in the vector s̃(ℓ) ∈ Ck(ℓ)

. 4

The reciprocal of the expansion rate of information symbols
in node ℓ (relative to the number of information symbols sent
from node ℓ − 1) induced by the combining unit is denoted
by γ(ℓ) ≜ k(ℓ−1)

k(ℓ) .
Therefore, the overall BW efficiency of a scheme at node ℓ

3s̃(ℓ) is used instead of s(ℓ) to highlight that it is not necessarily equal to
the original information symbols sent from the source.

4Widely linear operations are linear operations when viewed over the reals.
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is denoted as

η(ℓ) =
k(1)

T (ℓ)
=

(
ℓ∏

i=2

k(i−1)

k(i)

)
· k

(ℓ)

T (ℓ)
= R(ℓ)

s ·
ℓ∏

i=2

γ(i). (2)

Finally, we assume that the destination node is the only one
that has access to CSI, i.e., performs channel estimation.
Further, it can be shown that the destination node need only to
estimate products of channel coefficients that form a source-
to-destination path.

The transmission-combining schemes we propose all result
in an effective end-to-end unitary MIMO channel. The desti-
nation can recover the data by inverting the channel with no
noise amplification and then applying a scalar AWGN decoder.

A. Notations and basic properties

We use bold capital letters to denote matrices and bold small
letters to denote vectors. Assuming matrix X is composed of
N column vectors X =

[
x1 · · · xN

]
we denote Xvect ≜[

xT
1 · · · xT

N

]T
. For a complex vector x we define its real

representaiton as xr ≜
[
ℜ[x]T ℑ[x]T

]T
.

Let H be an m×n semi-unitary matrix (i.e., HHH = In×n).
Clearly, the following holds.

Property 1. The product of semi-unitary matrices is also a
semi-unitary matrix, i.e. if H1 is an m1 × n1 semi-unitary
matrix and H2 is an n1×n2 semi-unitary matrix, then H1H2

is an m1 × n2 semi-unitary matrix.

Property 2. Let z be an i.i.d., circularly-symmetric complex
Gaussian vector with entries of power P . Let z̃ = Hz Then z̃
is also an i.i.d., circularly-symmetric complex Gaussian vector
(of smaller dimension) with entries of power P .

III. SCHEMES FOR 2× 2 MIMO CHANNELS

We begin by describing a few AF schemes for a line network
with Nr = Nt = 2 in all the nodes.

A. Space-Only Amplify-and-Forward

To simplify the derivations in this case, we describe the
scheme in the absence of noise.5 Each relay retransmits the
symbols received from the previous node, i.e., C(ℓ)(s̃(ℓ)) =
s̃(ℓ). Next, we explicitly describe the case of L = 2.

• Transmission from the source: C(1)(s(1)) =
[
s1 s2

]
• Node 2:

– Input: y(2) = C(1)(s(1))H(1)

– Combining: s̃(2) = C(2)(Y(2)) = Y(2)

– Transmission: C(2)(s̃(2)) = s̃(2) = Y(2)

• Node 3: y(3) = C(2)(s̃(2))H(2) = C(1)(s(1))H(1)H(2).

Since we have C(ℓ)(s(ℓ)) = s(ℓ) it means that T (ℓ) = 1 and
k(ℓ) = 2 and therefore R

(ℓ)
s = 2. Further, since C(ℓ)(Y(ℓ)) =

Y(ℓ), we have also γ(ℓ) = 1. Hence, the overall efficiency at
each node ℓ, ℓ ∈ {2, . . . , L+1} is η(ℓ) = 2 (i.e. no BW loss).

However, consider the following two channel matrices

H(1) =

[
1 0
0 0

]
, H(2) =

[
0 0
0 1

]
, H(1)H(2) =

[
0 0
0 0

]
. (3)

5We may also disregard the power constraint.

Clearly, we cannot recover any of the transmitted symbols
at destination D3. Hence, the scheme does not achieve the
goal of ultra-reliability. We refer to such channel matrices as
“ill-matched".

Remark 2. We note that DMT-optimal relaying schemes also
do not gurantee successful transmission over such channels.
The reason is that in order for a scheme to be diversity-optimal
for a MIMO multihop line network, under the assumption
of i.i.d. Rayleigh fading, the scheme need only guarantee
successful transmission so long as Nt ×Nr (specific, chosen
a priori) disjoint paths in the edge graph between the source
and destination remain intact [8]. In contrast, the notion of
ulra-reliability we advocate requires robustness to any such
failure. That is, successful transmission should be guaranteed
so long as there remains a single end-to-end path intact.

B. Repetition
When using repetition diversity, the transmission matrix

from the source is given by C(1)(s1) = s1 ⊗ I2×2, and from
node ℓ ≥ 2 as

C(ℓ)(s̃(ℓ)) = αs̃(ℓ) ⊗ I2×2, (4)

where α =
√

P
1+P is a power normalization factor. We

note that, in general, transmitting C(ℓ−1)(s̃(ℓ−1)) (which is
composed of k(ℓ−1) information symbols) from node ℓ − 1,
results in

Y(ℓ) = α
(
s̃(ℓ−1) ⊗ I2×2

)
H(ℓ−1) + Z(ℓ+1),

which can be expressed using an equivalent virtual channel
matrix (EVCM) as

y̆(ℓ) = αH
(ℓ−1)
vect ⊗ Ik(ℓ−1)×k(ℓ−1)︸ ︷︷ ︸

H(H(ℓ−1))

s̃(ℓ−1) + z̆(ℓ), (5)

where H(H(ℓ−1)) is a scaled semi-unitary matrix. We note
that since the entries of the vector z̆(ℓ) are identical to those
of the matrix Z

(ℓ)
vect, it is a complex Gaussian vector with i.i.d.,

circularly-symmetric with entries of power 1/Nr = 1/2.
We assume that the combining operation results in s̃(ℓ) =

y̆(ℓ) (which is subsequently fed to the transmission block (4))
which amounts to some permutation of Y(ℓ)

vect.
An explicit description of the transmission and combining

of a line network with three nodes appears in Appendix A.
The following Lemma (whose proof is in Appendix A) shows
that ultra-reliability over 2× 2 multi-hop channels is achieved
when using transmission (4) and combining (5) in all nodes.

Lemma 1. Assuming ∥H(ℓ)∥2F > 0, ∀ℓ ∈ {1, . . . , L}, and
using transmission matrix (4) and combining operation (5) in
all nodes, then node L + 1, using CSI, can convert the end-
to-end MIMO channel to the following SISO channel,

ŝL+1
1 = αL−1

L∏
ℓ=1

∥H(ℓ)∥F · s1 + αL−1
L∏

ℓ=2

∥H(ℓ)∥F ẑ(3)+

αL−2
L∏

ℓ=3

∥H(ℓ)∥F ẑ(2) + · · ·+ ẑ(L+1) (6)
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where α =
√

P
1+P and ẑ(ℓ) are independent, circularly-

symmetric complex Gaussian noise with power 1/Nr = 1/2.

Unlike the case of space-only AF, it is clear from (6)
that repetition transmission achieves the goal of ultra-reliable
communication since the effective channel gain, being the
product of the individual Frobenius norms of the channels,
is strictly positive.

The downside is that very poor BW efficiency is achieved.

Specifically, by (2), we have η
(ℓ)
Rep+Rep =

(
1

NrNt

)ℓ−1 (
1
Nt

)
.

C. Alamouti + repetition

The Alamouti transmission block for two information sym-
bols is defined as

CAla

([
s1 s2

]T)
≜

1√
2

[
s1 −s∗2
s2 s∗1

]
. (7)

The source node D1 uses (7) for transmission. Assuming
an even number of information symbols to be sent, the
transmission matrix for ℓ ≥ 2 is defined as

C(ℓ)(s̃(ℓ)) =

√
P

1 + P


CAla

([
s̃
(ℓ)
1

(
s̃
(ℓ)
2

)∗]T)
...

CAla

([
s̃
(ℓ)

k(ℓ)−1

(
s̃
(ℓ)

k(ℓ)

)∗]T)
 . (8)

We note that when transmitting (8) , Y(ℓ) can be expressed
using the EVCM as

y̆(ℓ) =

√
P

2(1 + P )

[
I2ℓ−1×2ℓ−1 ⊗HAla(H

(ℓ−1))
]
s̃(ℓ−1) + z̆(ℓ) (9)

where
[
I2ℓ−1×2ℓ−1 ⊗HAla(H

(ℓ−1))
]

is a scaled semi-unitary
matrix and z̆(ℓ) is a complex Gaussian vector with i.i.d.,
circularly-symmetric entries of power 1/Nr = 1/2. The
combining operation amounts to obtaining (9), i.e. s̃(ℓ) = y̆(ℓ).

An explicit example of a line network with three nodes is
detailed in Appendix B. The following Lemma (whose proof
is in Appendix B) shows that ultra-reliability over 2×2 multi-
hop channels is achieved when using transmission (8) and
combining (9) in all nodes.

Lemma 2. Assuming ∥H(ℓ)∥2F > 0, ∀ℓ{1, . . . , L}, using
transmission matrix (8) and combining operation (9) in all
nodes, then node L+1, using CSI, can convert the end-to-end
MIMO channel to the following i.i.d. SISO channels,[

ŝ
(L+1)
1

ŝ
(L+1)
2

]
=

αL−1

√
2

L∏
ℓ=1

∥H(ℓ)∥F
[
s1
s2

]
+ αL−1

L∏
ℓ=2

∥H(ℓ)∥F ẑ(2)

+ αL−2
L∏

ℓ=3

∥H(ℓ)∥F ẑ(3) + . . .+ ẑ(L+1), (10)

where α =
√

P
2(1+P ) and where ẑ(ℓ) are vectors of i.i.d.,

circularly-symmetric complex Gaussian noise where the power
of ẑ(ℓ)i is 1/Nr = 1/2.

Transmission Alamouti (8) and generating the EVCM to be
transmitted to the next node (9) results in η

(ℓ)
Ala+Rep = 1

2

(ℓ−1).

D. Universal Transmission-Combining
The concept of universal combining was presented in [9].

We first briefly describe how to convert the 2 × 2 MIMO
channel to the equivalent of transmission of a rate 3/4 OSTBC
over a 4 × 1 MISO channel channel. Let the transmission
matrix be

C3/4

([
s1 s2 s3

]T)
=

√
6

5


s∗1 s∗2

−s2 s1
s3 0
0 s3
s∗1 −s2
s∗2 s1

 . (11)

For a single channel (L = 2), the received matrix Y(2) is
Y(2) = C3/4

([
s1 s2 s3

]T)
H(1) + Z(2).

Let the combining matrix be

C3/4

(
Y(2)

)
=

1√
2



(
Y

(2)
1,1

)∗
+ Y

(2)
3,2(

Y
(2)
2,1

)∗
+ Y

(2)
4,2(

−Y
(2)
3,1

)∗
+ Y

(2)
5,2(

−Y
(2)
4,1

)∗
+ Y

(2)
6,2

 . (12)

This results in

C(Y(2)) =

√
3

5


s1 s2 s3 0
−s∗2 s∗1 0 s3
−s∗3 0 s∗1 −s2
0 −s∗3 s∗2 s1


︸ ︷︷ ︸
CMISO,3/4

([
s1 s2 s3

]T)



(
h
(1)
1,1

)∗(
h
(1)
2,1

)∗
h
(1)
1,2

h
(1)
2,2

+ z̃(2).

This relation, obtained by the transmission-combining
scheme, is precisely the input and output relation when
transmitting the rate 3/4 OSTBC over a 4 × 1 MISO chan-
nel. Although this OSTBC does not have an EVCM over
the complex field, it does have an EVCM over the reals
(see Section 1.2.2 in [11]), leading to the EVCM relation
y̆
(2)
r = W̆(1)

[
s1 s2 s3

]T
r
+ z̆

(2)
r , where W̆(1) is a semi-

orthogonal matrix. Assuming node D2 has access to CSI it
can estimate

ŝ(2)r =

(
W̆(1)

)T
∥H(1)∥F

y̆(2)
r =

√
3

5
∥H(1)∥F

[
s1 s2 s3

]T
r
+ ẑ(2)r ,

where following Property 2, ẑ(2)r is real i.i.d. Gaussian noise
where each entry has power of 1/4.

In general, we assume s̃(ℓ) contains k(ℓ) information sym-
bols such that mod(k(ℓ), 3) = 0.6 The transmission matrix is
defined as

C(ℓ)
(
s̃(ℓ)

)
= γ(ℓ)


C3/4

([
s̃
(ℓ)
1 s̃

(ℓ)
2 s̃

(ℓ)
3

]T)
...

C3/4

([
s̃
(ℓ)

k(ℓ)−2
s̃
(ℓ)

k(ℓ)−1
s̃
(ℓ)

k(ℓ)

]T)
 , (13)

6Transmitting k(1) = 3L−1 information symbols from the transmitter
ensures that in all nodes mod(k(ℓ), 3) = 0.
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where γ(ℓ) =

{√
P

1+P ℓ > 1

1 ℓ = 1
. In general, node ℓ receives

Y(ℓ) = C(ℓ−1)
(
s̃(ℓ−1)

)
H(ℓ−1) + Z(ℓ) ≜


Y

(ℓ)
1
...

Y
(ℓ)

k(ℓ−1)/3


where Y

(ℓ)

j(ℓ)
, j(ℓ) ∈ {1, . . . , k(ℓ−1)/3} is a 6 × 2

matrix which is the outcome of transmitting

C3/4

([
s̃
(ℓ−1)

3j(ℓ)−2
s̃
(ℓ−1)

3j(ℓ)−1
s̃
(ℓ−1)

3j(ℓ)

]T)
. We define the

general transformation that converts the MIMO channel to an
equivalent MISO channel as

C(ℓ)
(
Y(ℓ)

)
=
[
C3/4

(
Y

(ℓ)
1

)
· · · C3/4

(
Y

(ℓ)

k(ℓ−1)/3

)]T
. (14)

which converts Y(ℓ) to
CMISO,3/4

([
s̃ℓ−1
1 s̃ℓ−1

2 s̃ℓ−1
3

]T)
...

CMISO,3/4

([
s̃ℓ−1
kℓ−2

s̃ℓ−1
kℓ−1

s̃ℓ−1
kℓ

]T)



(
h
(ℓ−1)
1,1

)∗(
h
(ℓ−1)
2,1

)∗

h
(ℓ−1)
1,2

h
(ℓ−1)
2,2

+ C(ℓ)(Z(ℓ)).

We note that since each entry in C(ℓ)(Z(ℓ)) is composed
of a (normalized) summation of distinct entries from Z(ℓ), it
follows that the entries are AWGN with power 1/2Nr = 1/4.
This can be expressed over the reals through rearranging the
real representation of C

(
Y(ℓ)

)
as

y̆(ℓ)
r = W̆(ℓ)

r s̆(ℓ−1)
r + z̆(ℓ)r . (15)

where W̆ is a semi-orthogonal matrix. We assume that the
combining block in node ℓ transfers s̃ℓ = y̆(ℓ) to the trans-
mission block.

We next establish the following lemma (whose proof is in
Appendix C).

Lemma 3. Assuming ∥H(ℓ)∥2F > 0, ∀ℓ{1, . . . , L}, then using
the transmission matrix (13) and combining operation that
results in (15). Further, at node L+ 1, the end-to-end MIMO
channel can be converted to the following i.i.d. SISO channels,

ŝ
(L+1)
i = αL−1

(√
3

5

)
L∏

ℓ=1

∥H(ℓ)∥F · si + αL−1
L∏

ℓ=2

∥H(ℓ)∥F ẑ(2)i

+ αL−2
L∏

ℓ=3

∥H(ℓ)∥F ẑ(3)i + · · ·+ ẑ
(L+1)
i , (16)

where i ∈ {1, . . . , k(1)}, α =
√

3P
5(1+P ) and where ẑ(ℓ) are

vectors of i.i.d., circularly-symmetric complex Gaussian noise
where the power of ẑ(ℓ)i is 1/Nr = 1/2.

Using the transmission operation (13) and the combining
opertation (14), results in BW efficiency of η(ℓ)3/4 = 1

2

(
3
4

)ℓ−1
.

E. Comparison of different schemes for 2× 2 channels
The upper sub-figure of Figure 3 depicts the efficiency of

the different schemes, all of which guarantee ultra-efficient
multi-hop MIMO 2× 2 relaying. It can be seen that the rate-
3/4 OSTBC based transmission combining scheme has the
best efficiency for networks with three or more hops.
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Figure 3. Comparing the BW efficiency of different schemes.

IV. SCHEMES FOR GENERAL N ×N MIMO CHANNELS

Unfortunately, there is no rate 1 OSTBC for more than
two transmit antennas. However, there exists a rate of 1/2
for any number of antennas [5]. Hence, we consider these as
a benchmark (as it clearly outperforms repetition).

In general, the number of information symbols sent by a
single real OSTBC of rate 1 is given by the Hurwitz-Radon
number [5], which we denote as ρ(N). Transmitting ρ(N)
complex information symbols from N transmit antennas at
rate 1/2 is achieved with T = 2ρ(N).

Hence, transmission at node ℓ has R
(ℓ)
s = 1/2. The com-

bining block transmits each received symbol from all transmit
antennas. We therfore have γ(ℓ) = ρ(N)

2·ρ(N)·N . It follows that

ηRate1/2+Rep. =
1
2

(
1

2N

)ℓ−1
.

For an N × N channel, we apply transmission combining
that converts the channel to resemble a MISO channel with N2

transmit antennas. One option for a transmission scheme first
transmits each information symbol from each antenna (while
other antennas are silent) and then its conjugate (while other
antennas are silant). Since the OSTBC for a MISO channel
is composed only of single information symbols and their
conjugates, it immediately follows that a combining matrix
exists that generates an equivalent channel. An example for
2× 2 channels appears in Appendix D.

We therefore have R(ℓ)
s = ρ(N2)

ρ(N2)·N ·2 It can be shown that we

have γ(ℓ) = 1
2 . This means that ηTrans.+Comb. =

1
2N

(
1
2

)ℓ−1
.

The lower sub-figure of Figure 3 depicts the efficiency of the
two schemes described above. We note that for L ≥ 3, trans-
mission+combining has significantly better efficiency. Further,
as the number of antennas increases, the difference in slopes
gets bigger.

We note, though, that there is a significant advantage to
rate 1/2 + repetition in terms of the block size (and thus
latency), as its block size is ρ(N) (2N)

ℓ−1, whereas the block
size of transmission+combining is ρ(N2) · 2ℓ−1. Since ρ(N)
scales exponentially with N , this amounts to a very significant
difference.
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